Four centuries exploring microworld. Since the first successful microscopy achievements from Antonie van Leeuwenhoek, near 1670, microscopes advanced far away. Nowadays we are able to go beyond and replicate Leeuwenhoek's microscope with cheap lenses and hi-tech cameras available inside our own smartphones.

Here are some simple and inexpensive projects.

Droplet lens that turns smartphones into microscopes.
from Australian National University

Turn Your Smartphone Into a Digital Microscope

Yu-Lung Sung, Jenn Jeang, Chia-Hsiung Lee, Wei-Chuan Shih (2015).
"Fabricating optical lenses by inkjet printing and heat-assistedin situcuring of polydimethylsiloxane for smartphone microscopy."
Journal of Biomedical Optics, 20 (4): 047005
DOI: 10.1117/1.JBO.20.4.047005

L-eye: A commercial mobile microscope that uses FRONT CAMERA of a smartphone.

Foldscope: a pocket-sized origami microscope.

μEye’s polymer lens
from NECTEC’s Photonics Technology Laboratory.

A DIY phone microscope using the tiny lens from a cheap laser pointer.
from Gross Science.

PNNL 350x Smartphone Microscope
A 3D printable Microscope for Mobile Devices that Costs Pennies
from Pacific Northwest National Laboratory

LudusScope: Smartphone Microscopy for Life-Science Education
Kim et al. (2016),
“LudusScope: Accessible Interactive Smartphone Microscopy for Life-Science Education”
PLoS ONE 11: e0162602

Observando movimiento browniano con smartphone:
Using an iPhone with a Microscope to view Brownian Motion.
El movimiento browniano es el movimiento aleatorio de partículas microscópicas suspendidas en un líquido. Fue descubierto por Robert Brown en 1827 y en 1905 Einstein lo explicó como el resultado de la agitación de las moléculas del líquido.
Para observar el movimiento browniano no alcanza con la magnificación de los microscopios de lente simple tipo Leeuwenhoek, por lo que en este caso se utiliza un microscopio comercial de 1200 aumentos al que se le agrega un smartphone con tres propósitos:
1) Demostración de cátedra: Proyectar en una pantalla la imagen que se está capturando mediante el smartphone para que toda la clase pueda observar el fenómeno al mismo tiempo.
2) Análisis cualitativa: Grabar en 120 o 240 cuadros por segundo (según el modelo de smartphone) y luego reproducir en cámara lenta para observar las trayectorias aleatorias.
3) Análisis cuantitativo: Analizar con Tracker el video registrado.

Particle Sizing with a Smartphone
En este artículo se propone medir el tamaño de partículas microscópicas (10 a 20 micrómetros) analizando scattering mediante láser y smartphone.

Daniel Carlson and Charlie Van Brackle (2014).
"Particle Sizing with a Smartphone"

Microscopio de fluorescencia con smartphone.
"Open-source do-it-yourself multi-color fluorescence smartphone microscopy"
by Yulung Sung, Fernando Campa, and Wei-Chuan Shih
Biomedical Optics Express Vol. 8, Issue 11, pp. 5075-5086 (2017)

Fluorescence microscopy is an important technique for cellular and microbiological investigations. Translating this technique onto a smartphone can enable particularly powerful applications such as on-site analysis, on-demand monitoring, and point-of-care diagnostics. Current fluorescence smartphone microscope setups require precise illumination and imaging alignment which altogether limit its broad adoption. We report a multi-color fluorescence smartphone microscope with a single contact lens-like add-on lens and slide-launched total-internal-reflection guided illumination for three common tasks in investigative fluorescence microscopy: autofluorescence, fluorescent stains, and immunofluorescence. The open-source, simple and cost-effective design has the potential for do-it-yourself fluorescence smartphone microscopy.

© 2017 Optical Society of America

Microscopio 60xau para Smartphone
El #60xau es un microscopio para smartphone de hasta 60 aumentos ("60x Clip-on Phone Microscope") desarrollado en Australia por el grupo de Sivam Krish, quien también es responsable del proyecto PhoneLabs.
Más info.

Microscopio sobre sensor de la cámara del teléfono.

Seung Ah Lee and Changhuei Yang (2014).
"A smartphone-based chip-scale microscope using ambient illumination"
Lab on a Chip, 14, 3056-3063


PDF article


Portable chip-scale microscopy devices can potentially address various imaging needs in mobile healthcare and environmental monitoring. Here, we demonstrate the adaptation of a smartphone's camera to function as a compact lensless microscope. Unlike other chip-scale microscopy schemes, this method uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is based on the shadow imaging technique where the sample is placed on the surface of the image sensor, which captures direct shadow images under illumination. To improve the image resolution beyond the pixel size, we perform pixel super-resolution reconstruction with multiple images at different angles of illumination, which are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. The lensless imaging scheme allows for sub-micron resolution imaging over an ultra-wide field-of-view (FOV). Image acquisition and reconstruction are performed on the device using a custom-built Android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.

"Reinventing Pocket Microscopy"
T. Kamal, X. F. He, W.M. Lee
(Submitted on 1 Jul 2015)

The key to the success of pocket microscopes stems from the convenience for anyone to magnify the fine details (tens of micrometres) of any object on-thespot. The capability with a portable microscope lets us surpass our limited vision and is commonly used in many areas of science, industry, education. The growth of imaging and computing power in smartphones is creating the possibility of converting your smartphone into a high power pocket microscope. In this article, we briefly describe the history of pocket microscopy and elucidate how mobile technologies are set to become the next platform for pocket microscopes.

PDF: https://arxiv.org/ftp/arxiv/papers/1507/1507.00589.pdf